Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1554-1564, 2022.
Article in Chinese | WPRIM | ID: wpr-927800

ABSTRACT

Graph-theory-based pathway analysis is a commonly used method for pathway searching in genome-scale metabolic networks. However, such searching often results in many pathways biologically infeasible due to the presence of currency metabolites (e.g. H+, H2O, CO2, ATP etc.). Several methods have been proposed to address the problem but up to now there is no well-recognized methods for processing the currency metabolites. In this study, we proposed a new method based on the function of currency metabolites for transferring of functional groups such as phosphate. We processed most currency metabolites as pairs rather than individual metabolites, and ranked the pairs based on their importance in transferring functional groups, in order to make sure at least one main metabolite link exists for any reaction. The whole process can be done automatically by programming. Comparison with existing approaches indicates that more biologically infeasible pathways were removed by our method and the calculated pathways were more reliable, which may facilitate the graph-theory-based pathway design and visualization.


Subject(s)
Genome , Metabolic Networks and Pathways
2.
Chinese Journal of Biotechnology ; (12): 1526-1540, 2021.
Article in Chinese | WPRIM | ID: wpr-878653

ABSTRACT

Genome-scale metabolic network model (GSMM) is becoming an important tool for studying cellular metabolic characteristics, and remarkable advances in relevant theories and methods have been made. Recently, various constraint-based GSMMs that integrated genomic, transcriptomic, proteomic, and thermodynamic data have been developed. These developments, together with the theoretical breakthroughs, have greatly contributed to identification of target genes, systems metabolic engineering, drug discovery, understanding disease mechanism, and many others. This review summarizes how to incorporate transcriptomic, proteomic, and thermodynamic-constraints into GSMM, and illustrates the shortcomings and challenges of applying each of these methods. Finally, we illustrate how to develop and refine a fully integrated GSMM by incorporating transcriptomic, proteomic, and thermodynamic constraints, and discuss future perspectives of constraint-based GSMM.


Subject(s)
Genome/genetics , Metabolic Engineering , Metabolic Networks and Pathways/genetics , Models, Biological , Proteomics
3.
Chinese Journal of Biotechnology ; (12): 860-873, 2021.
Article in Chinese | WPRIM | ID: wpr-878601

ABSTRACT

Genome-scale metabolic network model (GSMM) is an extremely important guiding tool in the targeted modification of industrial microbial strains, which helps researchers to quickly obtain industrial microbes with specific traits and has attracted increasing attention. Here we reviewe the development history of GSMM and summarized the construction method of GSMM. Furthermore, the development and application of GSMM in industrial microorganisms are elaborated by using four typical industrial microorganisms (Bacillus subtilis, Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae) as examples. In addition, prospects in the development trend of GSMM are proposed.


Subject(s)
Corynebacterium glutamicum/genetics , Escherichia coli/genetics , Metabolic Engineering , Metabolic Networks and Pathways/genetics
4.
Chinese Journal of Biotechnology ; (12): 1914-1924, 2019.
Article in Chinese | WPRIM | ID: wpr-771743

ABSTRACT

Genome-scale metabolic network models have been successfully applied to guide metabolic engineering. However, the conventional flux balance analysis only considers stoichiometry and reaction direction constraints, and the simulation results cannot accurately describe certain phenomena such as overflow metabolism and diauxie growth on two substrates. Recently, researchers proposed new constraint-based methods to simulate the cellular behavior under different conditions more precisely by introducing new constraints such as limited enzyme content and thermodynamics feasibility. Here we review several enzyme-constrained models, giving a comprehensive introduction on the biological basis and mathematical representation for the enzyme constraint, the optimization function, the impact on the calculated flux distribution and their application in identification of metabolic engineering targets. The main problems in these existing methods and the perspectives on this emerging research field are also discussed. By introducing new constraints, metabolic network models can simulate and predict cellular behavior under various environmental and genetic perturbations more accurately, and thus can provide more reliable guidance to strain engineering.


Subject(s)
Enzymes , Metabolism , Genome , Genetics , Metabolic Engineering , Metabolic Networks and Pathways , Genetics , Models, Biological , Thermodynamics
5.
Chinese Journal of Biotechnology ; (12): 1010-1025, 2016.
Article in Chinese | WPRIM | ID: wpr-242278

ABSTRACT

Aspergillus niger, as an important industrial fermentation strain, is widely applied in the production of organic acids and industrial enzymes. With the development of diverse omics technologies, the data of genome, transcriptome, proteome and metabolome of A. niger are increasing continuously, which declared the coming era of big data for the research in fermentation process of A. niger. The data analysis from single omics and the comparison of multi-omics, to the integrations of multi-omics based on the genome-scale metabolic network model largely extends the intensive and systematic understanding of the efficient production mechanism of A. niger. It also provides possibilities for the reasonable global optimization of strain performance by genetic modification and process regulation. We reviewed and summarized progress in omics research of A. niger, and proposed the development direction of omics research on this cell factory.


Subject(s)
Aspergillus niger , Genetics , Fermentation , Genome, Fungal , Metabolic Networks and Pathways , Metabolome , Proteome , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL